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Abstract
A long-term aim of density functional theory is to obtain a differential equation
for the ground-state electron density ρ(r) in a closed-shell atom, the simplest
example being He. Since He remains intractable analytically, artificial atoms
with harmonic repulsive potential energy u(r12) have therefore been studied.
Here we exploit recent work on ρ(r) for such a two-electron system, with
u(r12) = λ

/
r2

12, to construct a second-order linear differential equation for
ρ(r). This is compared and contrasted with available results for different
choices of u(r12).

PACS numbers: 01.55.+b, 02.30.Hq, 02.30.Qp, 71.10.−w

Harmonic confinement of quantum particles using magnetic trapping at low densities is now
commonplace for both bosons [1, 2] and fermions [3] at ultralow temperatures. Neglecting
interparticle interactions, we considered earlier such confinement for fermions occupying an
arbitrary number of closed shells in two [4] and three [5] dimensions, and in both cases
differential equations have been given for the ground-state density ρ(r).

Of course, it is of considerable interest to effect the generalization of such differential
equations to include interparticle interactions. Here, therefore, we utilize recent results
obtained on Wigner bosonic molecules with repulsive interactions and harmonic confinement
[6] to construct a differential equation for a He-like artificial atom with (a) harmonic
confinement V (r) = mω2r2/2 and (b) an interparticle repulsive potential energy u(r12) given
by

u(r12) = λ
/
r2

12. (1)
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We follow Crandall et al [7] in writing the unnormalized spatial symmetric wavefunction
for the ground state as

�(r1, r2) = e−mωr2
1 /2h̄ e−mωr2

2 /2h̄ rα
12 (2)

where r12 = |r1 − r2| is the particle separation while α measures the strength of the repulsive
coupling through

α = [(1 + 4λm/h̄2)1/2 − 1]/2. (3)

In the work on Wigner bosonic molecules we were able to analytically calculate∫
�2(r1, r2) dr2 and this is what we require, when normalized such that∫

ρ(r) dr = 2, (4)

to obtain the ground-state density of the present artificial two-electron atom. The result [6] is
given by

ρ(r) = 1

2α−1π3/2

(mω

h̄

)3/2
e−2mωr2/h̄

1F1

(
3

2
+ α; 3

2
; mωr2

h̄

)
(5)

where 1F1 is the confluent hypergeometric function [8].
The aim of the present study is then to obtain the differential equation satisfied by ρ(r)

in equation (5). To this end, we multiply both sides of equation (5) by exp(2mωr2/h̄) and
then note that the product of this Gaussian times ρ(r) satisfies the same linear homogeneous
differential equation as the confluent hypergeometric function 1F1.

From Morse and Feshbach [9], the function 1F1(γ ; �; z) satisfies the differential equation

z
d2y

dz2
+ (z − �)

dy

dz
− γy = 0. (6)

Replacing y in equation (6) by ρ(r) exp(2mωr2/h̄) we find the corresponding differential
equation for the ground-state density ρ(r). This second-order, linear, homogeneous differential
equation takes the explicit form

h̄

4mω
r ρ ′′(r) +

[
h̄

2mω
+

3

2
r2

]
ρ ′(r) + r

[
3

2
− α + 2

mω

h̄
r2

]
ρ(r) = 0. (7)

It is of interest to compare equation (7) with those appropriate to other forms of interparticle
interaction u(r12) again combined with harmonic confinement. Thus March, Gál and Nagy
[10] took u(r12) = e2/r12, the so-called Hookean atom, and derived the third-order differential
equation

3∑
i=0

Pi(r)ρ
(i)(r) = 0 (8)

where Pi(r) are polynomials tabulated in [10]. For the more elementary choice u(r12) = 1
2kr2

12,
March and Ludeña [11] obtained a second-order differential equation paralleling the result
(7): namely

∇2ρ = (−6β + 4β2r2)ρ(r), (9)

where β = (2γ − 1)/γ while γ = 1
2 {(1 + 2k)1/2 + 1}, the confinement potential energy

being 1
2 r2.

In conclusion, we note that a route exists, at least in principle, to unify the three
equations (7)–(9) corresponding to the same harmonic confinement but different choices
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of the interparticle repulsion u(r12). This route is via the general expression for ρ(r) given by
Holas et al (see their equation (14)) [12],

ρ(r) = 8

π1/2
exp

(
− r2

a2

)∫ ∞

0
y2 exp

(
−y2

4

)
{�RM(ay)}2 sinh(ry/a)

(ry/a)
. (10)

Here the length a is defined in terms of the harmonic confining potential energy as

a =
(

h̄

2mω

) 1
2

. (11)

It is worth recalling at this point that this approach may be considered as complementary to that
of density-functional theory in which one obtains the differential equations for the ground-
state density of systems subject to different external potentials but with fixed interparticle
interaction.

The merit of equation (11) is that the interparticle repulsion u(r12) is subsumed into the
relative motion (RM) function �RM(r), which satisfies the radial Schrödinger equation[

−h̄2

m

∂2

∂r2
+ Veff(r)

]
ψRM(r) = ERMψRM(r) (12)

where

Veff(r) = 1
4mω2r2 + u(r) (13)

while

ψRM(r) = (4π)1/2r�RM(r). (14)

In equation (10), �RM(r) is normalized such that∫ ∞

0
dr[ψRM(r)]2 = 1. (15)

For the interaction (1), in fact ψRM(r) has the explicit form

ψRM(r) =
(mω

2h̄

)α/2+3/4
[

2

�(α + 3/2)

]1/2

e−mωr2/(4h̄) rα+1. (16)

Inserting this into equation (10) leads to the integral form

ρ(r) = e−2mωr2/h̄

π3/24α�(α + 3/2)

mω

h̄r

∫ ∞

0
e−y2/2y2α+1 sinh(ry/a) dy. (17)

Comparing equations (17) and (5), one evidently has an integral representation for the
hypergeometric function 1F1 in the case when its second argument remains less than the
first. The equivalence can be explicitly checked in general by comparing the series expansion
of expressions (17) and (5).

To briefly summarize, the ground-state electron density of the model atom with harmonic
confinement and interaction (1) satisfies the linear homogeneous second-order differential
equation (7). For different interactions, with the same external potential, equation (10)
provides a unification, but so far it has not proved possible to write a general single differential
equation for arbitrary u(r12).
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[10] March N H, Gál T and Nagy Á 1998 Chem. Phys. Lett. 292 384
[11] March N M and Ludeña E V 2004 Phys. Lett. A 330 16
[12] Holas A, Howard I A and March N H 2003 Phys. Lett. A 310 451


	Acknowledgments
	References

